Search for Anomalous Kinematics in Top Dilepton Events at CDF

- Motivations and Goals
- Method
- Data Sample and Event Selection
- Results
- Conclusions

Andrew Ivanov
University of Rochester
for CDF collaboration

DPF Meeting August 31, 2004

Top Dilepton Decay Chain

$$I = e \text{ or } \mu$$
 $BR = 5 \%$

Event Signature:

2 high-E_T leptons (e or μ), at least 2 high-E_T jets (b-jets + ISR/FSR), large missing transverse energy due to neutrinos.

Motivation: Observed 9
events in Tevatron Run I,
several events had
kinematics that was
incompatible with the
Standard Model
expectations.

In hep-ph/9607342 Barnett and Hall argue that some of the Run I Top Dilepton events have characteristics that are better accounted for by decays of supersymmetric quarks:

Goals of the Analysis

(motivated by peculiarities seen in Run I Top Dilepton Sample

Missing E_T distribution Run I dilepton sample

- Determine how consistent the kinematic features of the dilepton events are with the SM.
- Isolate events in a data sample with possible non-SM decays and quantify departure of those events from the SM.

What kind of distortions in kinematic distributions are we looking for?

Expect new physics to reveal itself in the high Pt region.

- We design a statistical technique (goodness-of-fit) for a generic search for new physics especially sensitive to the tails of kinematic distributions.
- Method is
- a) data-driven;
- b) defined a-priori;
- c) designed to isolate a subset of events most inconsistent with the SM and to assess significance of the deviation

Kolmogorov-Smirnov test

Adopt KS test for comparison of kinematic distributions

$$\Delta = \max_{i} | F(x_i) - S_N^K(x_i) |$$

Example: single variable x

- lacktriangleright Randomly populate N events this is a pseudo-experiment S_N
- Construct subset of events S_N^K -- from the K events at the right tail.
- Find the KS distance Δ_{K} between Standard Model distribution F(x) and data $S_{N}^{K}(x)$
- * Construct probability distribution functions $F_N^K(\Delta_K)$ for each K:

$$1 \le K \le N$$

by generating a large number of pseudo-experiments

Isolating the most unlikely subset and quantifying significance of deviation

$$P_K = \int_{\Delta_K}^{\infty} F_K^N(\Delta_K') d\Delta_K'$$

Determines probability of consistency for subset of K events

Define Statistic:

$$P = \min_{0 \le K \le N} P_K$$

Determines a subset revealing the largest discrepancy from the Standard Model (a subset of possible new physics events ?!)

Next, generate pseudo-experiments and calculate

$$\alpha = Prob (P < P_{data})$$

which quantifies significance level of departure of the most unlikely subset from the SM

Multi-Variate test

We choose a <u>statistic</u> (Product KS)

$$P = (P_x . P_y)^{\frac{1}{2}}$$

- geometrical mean of 1D-KS probabilities P.
- Assign a weight to each event measure of 'unlikeness'.
- $\mathbf{W} = (\mathbf{W}_{x} \cdot \mathbf{W}_{y})^{\frac{1}{2}}$, where

$$w_x = \int_{x_0}^1 f(x, y) dx$$

- Construct unlikely K-subset from K events with smallest weights.
 - Proceed as in 1D-case.

Choice of kinematic variables

New physics is likely to reveal itself in various kinematic distributions. Need to include many variables, but not too many – we don't want to dilute the result.

New physics scenario:

- Decay of heavy particles leads to large transverse momenta objects with at least one hard lepton and a large missing Et. (Missing E_T , P_T of the leading lepton)
- 2. Conservation laws require large quantities to be back to back. ($\Delta \phi$ leading lepton, met angle between them)
- Final state quantities of a new physics event most likely do not satisfy the system of kinematic equations for the SM top quark decay. (topological variable)

Topological weight of an event

$$(P_l + P_v + P_b)^2 = M_t^2$$

$$(P_l + P_v)^2 = M_W^2$$

- Solve system of kinematic equations for neutrino momenta.
- Enhance neutrino solution phase space by accounting for ambiguities in two lepton-b-jets pairings, detector resolution and uncertainty in top mass.
- Integrate over enhanced phase space and get a topological weight per each event.

$$T_{w} = \int \exp \left\{ -\frac{(\vec{\mathbb{E}_{\mathrm{T}}}^{predicted} - \vec{\mathbb{E}_{\mathrm{T}}}^{measured})^{2}}{2\sigma_{\vec{\mathbb{E}_{\mathrm{T}}}}^{2}} \right\} d\vec{\mathbb{E}_{\mathrm{T}}}^{predicted}$$

Top dilepton events have on average larger T than non-top SM background and new physics events

MC comparison of ttbar with Barnett & Hall SUSY model

Assuming 50 % dilepton candidates from this SUSY model, the PKS method would find less than 1% consistency 60% of the time with 13 events sample.

Run II Top Dilepton Selection

- Event Selection used in Run II top cross section measurement named 'DIL' (hep-ex/0404036 accepted to PRL)
- Two leptons $E_T > 20$ GeV (at least one isolated);
- Opposite charge;
- Two jets $E_T > 15$ GeV, $|\eta| < 2.5$
- Reduce Drell-Yan events and other SM backgrounds: Missing $E_T > 25$ GeV;

```
\begin{split} |\Delta\phi_{(\text{lepton},\text{Met})}| &> 20\text{deg if Met} < 50 \text{ GeV}; \\ \text{in Z mass region - } 76 \text{ GeV} &< \text{MII} < 106 \text{ GeV}: \\ \text{jet Significance} &> 8; \\ |\Delta\phi_{(\text{jet OR lepton},\text{Met})}| &> 20\text{deg} \\ H_T \text{ (scalar energy sum of all objects)} &> 200 \text{ GeV.} \end{split}
```

```
Observe 13 events;
expect 2.7+/- 0.7 from non-top backgrounds,
8.2 +/- 1.1 from ttbar (\sigma = 6.7 pb)
```

Kinematics in Run II Top Dilepton Sample

Observe most unlikely subset of all 13 events, which is α = 1.6% consistent with SM primarily due to an excess of low P_T leptons

Dilepton events in (Ptl,T) -plane

Low P_T-lepton events are accompanied with b-jets - likely being from ttbar

Systematic Uncertainties

Make Use of +,- 1 σ *templates*

Source	α
Background Estimates	0.010-0.027
Jet Energy Scale	0.021-0.026
ISR/FSR	0.012-0.016
PDFs	0.019
Top Mass	0.014-0.021
MC Generator	0.016
Combined	0.010-0.045

Procedure:Find α' for eachsystematic

uncertainty.

For combining all systematic effects use combinations of the worst scenarios.

Conclusions

- We have assessed the top dilepton sample's consistency with the Standard Model in the four-variable space (missing E_T , P_T of the leading lepton, $\Delta \phi$ between these quantities and T) and find a probability of consistency 1.0 4.5 %.
- The distributions are consistent with the SM expectations. The lepton P_T distribution exhibits a mild excess at low P_T consistent with a statistical fluctuation of SM top.
- No anomalies are seen in the kinematic regions expected to be populated by events containing new heavy particles. New physics scenarios invoked by Run I events are not favored by the Run II data.
- This analysis is based on 193 pb⁻¹, another ~ 200 pb⁻¹ are collected, expect ~ 4000 9000 pb⁻¹ with Run II by 2009

Backup Slides

Validation of MC simulation on the sample of W + 3 jets events

- Event Selection:
- one high $P_T > 20$ GeV electron or muon (trigger);
- At least three jets (Et > 15 GeV, $|\eta|$ < 2.5)
- Met > 25 GeV

(QCD removal: if Met < 35 GeV, $0.5 < \Delta\Phi$ (Met,leading jet) < 2.5)

- $|Z|_{primary\ vertex} Z|_{0,\ lepton}| < 5.0\ cm$
- Observe: 973 events. Main Backgrounds: QCD ~ 8.8%; ttbar ~ 11.2%
- ◆ Require 4 th jet to "simulate" T:
 - treat the first two jets as b-jets and the other two jets as a second lepton and neutrino;
 - reconstruct an event if it was top dilepton.

'W+Jets' kinematic distributions

